Voith Turbo

VOITH

IPN Catalog Low-pressure internal gear pumps

Benefits that impress

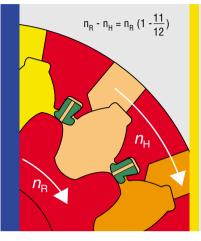
Internal gear pumps from Voith Turbo are working reliably in hundreds of thousands of machines around the world. Sophisticated technology, robust design and costefficient operation have convinced thousands of customers to trust Voith. Based on that trust, we have become the world market leader for high-pressure internal gear pumps with gap compensation.

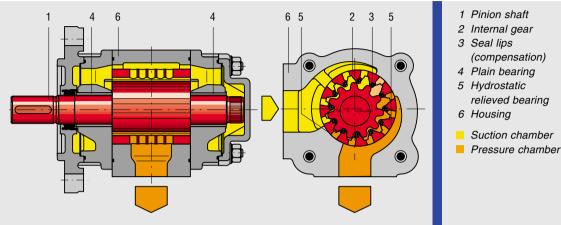
Features that count

The market requires hydraulic pumps with compact dimensions, low operating noise levels, minimal pressure and volume pulsation, whilst at the same time being highly efficient. Voith Turbo has met these demands by developing IPN pumps based on the Superlip[®] principle. An innovative gap compensation between internal gear and pinion, as well as a volume-optimized involute gearing make a major contribution to meeting these requirements.

Machines that run

Rarely seen, but hard at work in countless machines, Voith Turbo internal gear pumps reliably provide high pressures. They are mainly used in the plastic and sheet-metal processing sectors, presses as well as conveying and lifting equipment. The pumps are also in demand for shipbuilding, municipal vehicles, power plants and special machine building.


Contents



Pressure cast machine, pump with variable pump flow thanks to drive speed control

P	age
Design and function	3
Performance data	4
IPN 4	6
IPN 5	8
IPN 6	10
SAE suction and pressure flange	12
Type code Order designation	13
Multi-flow pumps Pump combinations	14
Models	15

Design and function

Design features

- Internal gear principle
- Sleeve bearing
- Radial gap compensation with Voith Superlip principle
- Volume-optimized involute gearing

Product characteristics

- Long service life
- High volumetric efficiency
- High overall efficiency
- Very low flow and pressure pulsation
- Low noise levels
- Compact dimensions
- Low weight
- Wide speed range
- Excellent suction properties
- Large viscosity range
- Simple maintenance
- Multiple pumps and pump combinations possible
- Suitable for variable-speed drives (variable volume flow)
- Motor operation possible (energy recovery)

Function

When the gears rotate through an angle of 180° in the pump, the gear chamber opens and draws in the pressure fluid (as a rule, hydraulic oil) into the cavity between the pinion and the internal gear.

The gear chambers are sealed in a radial direction by gear meshing and by the seal lips and pinion head. This design minimizes volume losses and increases efficiency.

When the gears rotate a further 180° the pinion teeth enter the gaps between the internal gear teeth and displace the pressure fluid.

Combinations

IPN pumps can be combined to form dual or multi-flow pumps. Combinations with other Voith Turbo pump series are also possible. Used in conjunction with pumps from the medium and high-pressure series, Voith equipment can handle a wide range of potential applications.

For further information on possible combinations, see page 14 and our brochure No. G1714 (Voith multiflow pumps).

Combinations with third-party products are generally possible. We'll be happy to discuss your needs.

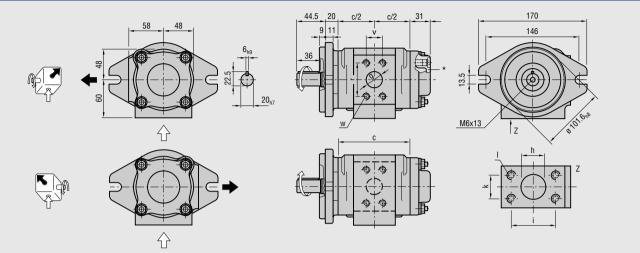
Variable volume flow

We supply complete hydraulic units with IPN pumps, asynchronous motors and frequency converters (EPA/EPAF system) to generate variable volume flows. For further information, see our brochure No. G1420 (Voith EPA System).

Performance data

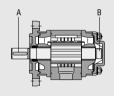
hal gear pump with radial gap bensation (Voith Superlip principle) hole flange; ISO 3019/1 or A hole flange; ISO 3019/2 suction and pressure flange J 518 C code 61
nole flange; ISO 3019/1 or A hole flange; ISO 3019/2
nole flange; ISO 3019/1 or A hole flange; ISO 3019/2
hole flange; ISO 3019/1 or A hole flange; ISO 3019/2
hole flange; ISO 3019/1 or A hole flange; ISO 3019/2
с, , , , , , , , , , , , , , , , , , ,
suction and pressure flange J 518 C code 61
subtroll and prosoure nange o o to o coue o t
wise or anti-clockwise
т
etails of radial and axial drive shaft loads,
e contact your Voith Turbo representative
3 bar absolute pressure
art, briefly 0.63 bar)
mineral oils DIN 51524, part 2 or 3
300 mm ² s ⁻¹ (cSt)
2000 mm ² s ⁻¹ (cSt)
.+80 °C
8
tion quota min. $\beta_{20} \ge 75$,
nmended $\beta_{10} \ge 100$ (longer service life)
.+60 °C

Calculations	
Delivery	$Q = V_{g th} \cdot n \cdot \eta_v \cdot 10^{-3} ~[l/min]$
Power	$P = \frac{Q \cdot \Delta p}{600 \cdot \eta_g} [kW]$
V _{g th}	Pump volume per revolution [cm ³]
n	Speed [min ⁻¹]
η,	Volumetric efficiency
η	Overall efficiency
Δр	Differential pressure [bar]

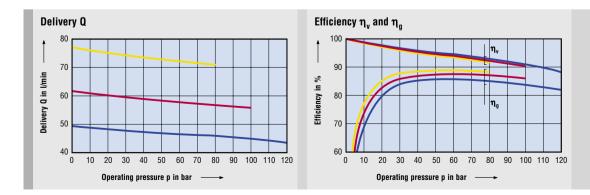

Characteristics										
Type,	Displacement	Spe	eed	Delivery	Pressures within the range n _{min} n _{max}					
size –	per revolution	min.	max.	at 1500 min ⁻¹	Continuous pressure	Peak pressure				
delivery	[cm ³]	[min ⁻¹]	[min ⁻¹]	[l/min]	[bar]	[bar]				
IPN 4 - 32	32.1	400	3600	48.1	100	125				
IPN 4 - 40	40.1	400	3600	60.1	80	100				
IPN 4 – 50	50.2	400	3600	75.3	63	80				
IPN 5 - 64	64.2	400	2500	96.3	100	125				
IPN 5 - 80	79.9	400	2500	119.8	80	100				
IPN 5 – 100	100.2	400	2500	150.3	63	80				
IPN 6 – 125	125.0	400	2000	187.5	100	125				
IPN 6 – 160	159.9	400	2000	239.8	80	100				
IPN 6 – 200	199.7	400	2000	299.5	63	80				

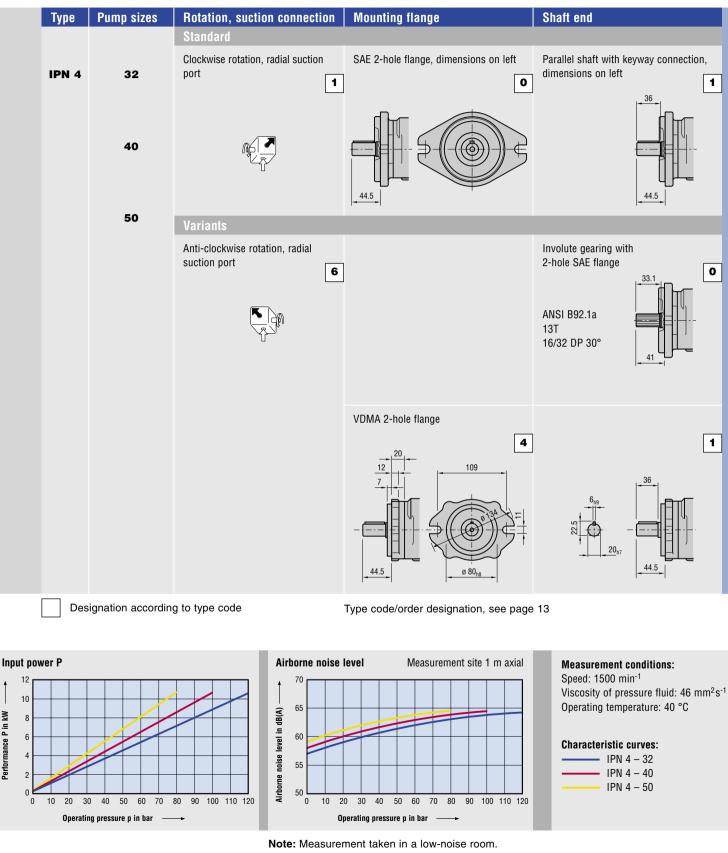
The values given apply for:

- Pumping of mineral oils with a viscosity of 20...40 mm²s⁻¹
- An input pressure of 0.8...3.0 bar
- Notes:
- Peak pressures apply to 15% of operating time and a maximum cycle time of 1 minute.
- Please enquire about pressures at speeds lower than n_{min}.
- Due to production tolerances, the pump volume may be approx.
 1.5% lower.


Standard design

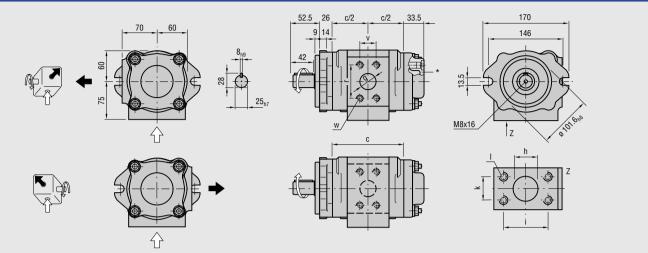
Design and dimensions




* Ensure the M10x1plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm during pumping operation. Depending on the pump position, filling or ventilation is possible here prior to commissioning.

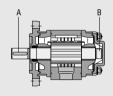
Design		Dimensions									SAE flan	ge no.
	C	g	h	i	k	I	r	v	w			
	[mm]	[mm]	[mm]	[mm]	[mm]	thread	[mm]	[mm]	thread	[kg]	-	
IPN 4 - 32	100.5	23	32	58.7	30.2	M10x15	52.4	26.2	M10x15	6.1	12	13
IPN 4 - 40	113.5	25	38	70	36	M12x20	52.4	26.2	M10x15	7.0	12	30
IPN 4 - 50	130	30	40	70	36	M12x20	58.7	30.2	M10x15	8.1	13	30

Allowed input torques:Input shaftA: 160 NmSecondary shaftB: 100 Nm

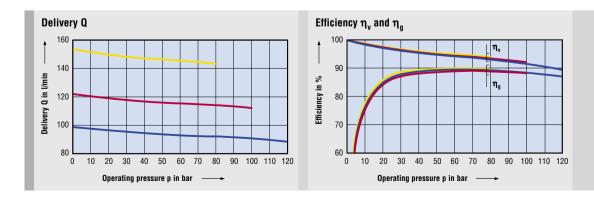


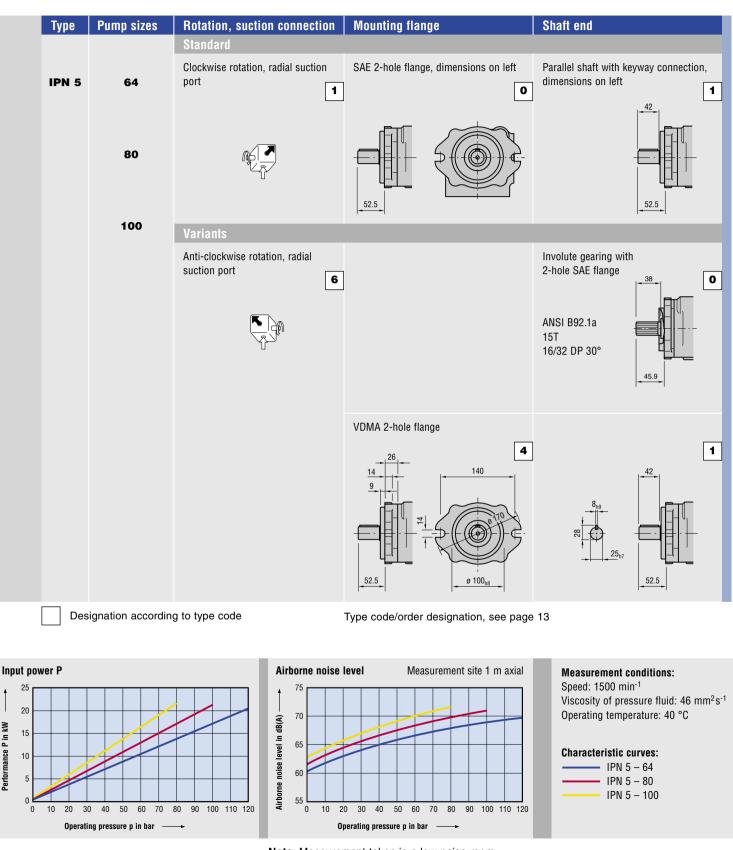
Performance P in kW

In an anechoic room, the measurements lie approx. 5 dB(A) lower.


Standard design

Design and dimensions



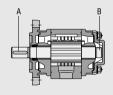

* Ensure the M10x1plug screw hexagon socket SW5, is tightened to a torque of 10 Nm during pumping operation. Depending on the pump position, filling or ventilation is possible here prior to commissioning.

Design	Dimensions									Weight	SAE flan	ge no.
		g	h		k	I	r	v	w			
	[mm]	[mm]	[mm]	[mm]	[mm]	thread	[mm]	[mm]	thread	[kg]	•	\sim
IPN 5 - 64	119.5	30	40	70	36	M12x20	58.7	30.2	M10x15	11.3	13	30
IPN 5 - 80	135	32	50	77.8	42.9	M12x20	58.7	30.2	M10x15	12.7	13	15
IPN 5 - 100	155	38	50	77.8	42.9	M12x20	70	36	M12x20	14.7	30	15

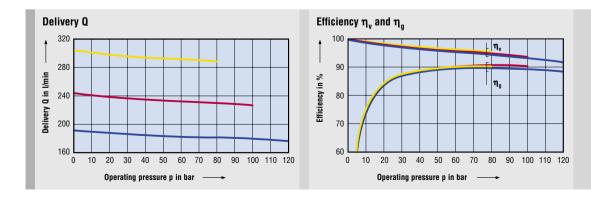
Allowed input torques:Drive shaftA: 295 NmSecondary shaftB: 200 Nm

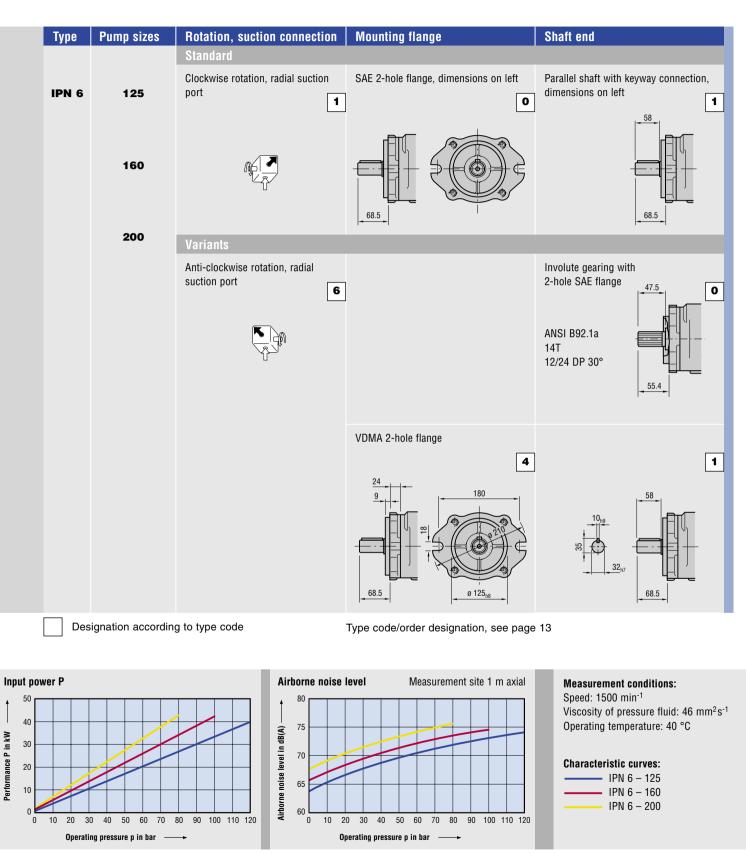
Performance P in kW

Note: Measurement taken in a low-noise room. In an anechoic room the measured values lie approx. 5 dB(A) lower.


Standard design

Design and dimensions

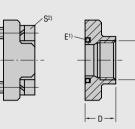



* Ensure the M10x1plug screw, hexagon socket SW5, is tightened to a torque of 10 Nm during pumping operation. Depending on the pump position, filling or ventilation is possible here prior to commissioning.

Design	Dimensions									Weight	SAE flan	ge no.
		g	h	i	k	I	r	v	w			
	[mm]	[mm]	[mm]	[mm]	[mm]	thread	[mm]	[mm]	thread	[kg]	•	\sim
IPN 6 - 125	151	38	50	77.8	42.9	M12x20	70	36	M12x20	19.5	30	15
IPN 6 - 160	172.5	40	62	89	50.8	M12x20	70	36	M12x20	22.1	30	16
IPN 6 - 200	197	45	72	106.3	62	M16x25	77.8	42.9	M12x20	25.2	15	17

Allowed input torques:Input shaftA: 605 NmSecondary shaftB: 400 Nm

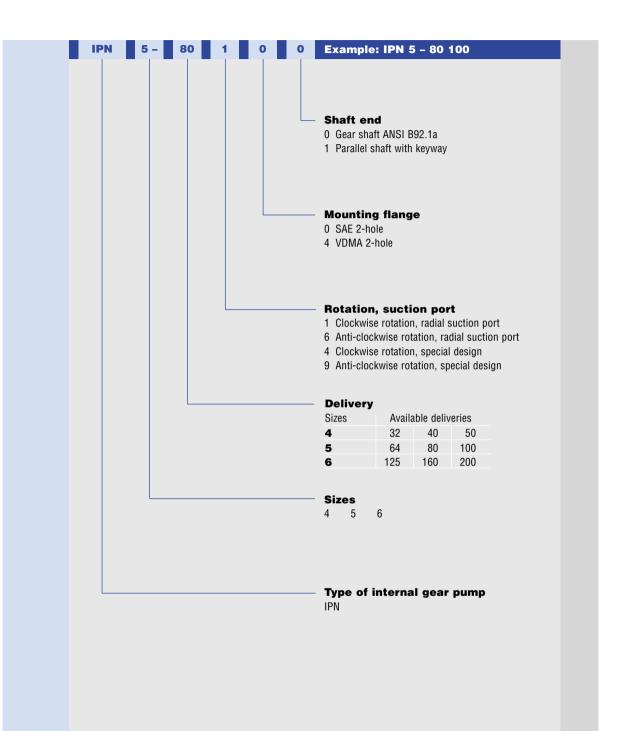



Note: Measurement taken in a low-noise room. In an anechoic room the measured values lie approx. 5 dB(A) lower.

SAE suction and pressure flanges

according to SAE J 518 C code 61

SAE flange, single-piece



SAE flange no.	А	В	C	D	E ¹⁾	i	k	S ²⁾	max. pressure
	Thread	[mm]	[mm]	[mm]	Seal ring	[mm]	[mm]	Thread	[bar]
10	G ¹ /2	46	54	36	18.66 – 3.53	38.1	17.5	M 8	345
11	G ³ /4	50	65	36	24.99 - 3.53	47.6	22.2	M 10	345
12	G 1	55	70	38	32.92 - 3.53	52.4	26.2	M 10	345
13	G 1- ¹ /4	68	79	41	37.69 - 3.53	58.7	30.2	M 10	276
14 ³⁾	G 1- ¹ /2	82	98	50	47.22 - 3.53	70	36	M 12	345 ³⁾
30	G 1- ¹ /2	78	93	45	47.22 - 3.53	70	36	M 12	207
15	G 2	90	102	45	56.74 - 3.53	77.8	42.9	M 12	207
16	G 2-1/2	105	114	50	69.44 - 3.53	89	50.8	M 12	172
17	G 3	124	134	50	85.32 - 3.53	106.3	62	M 16	138
18	G 4	146	162	48	110.72 – 3.53	130	77.8	M 16	34

¹⁾ Round seal ring (O-ring) ISO-R 1629 NBR ²⁾ Machine head screw EN ISO 4762 ³⁾ Special design, deviating from SAE J 518 C code 61


Type code

Order designation

Multi-flow pumps

Pump combinations

Combinations of IPN pumps

- IPN pumps of the same or different sizes can be combined to form multi-flow pumps.
- All sizes with the respective pump volumes are available as two or three-flow pumps; four-flow pumps must be designed by Voith Turbo.
- The pumps are arranged in increasing order according to size and delivery.

Combination of IPN/IP... pumps

- It is possible to combine IPN pumps with other Voith Turbo pump series (e.g. medium-pressure pumps IPC or high-pressure pumps IPV).
- The pumps are arranged by type and size, as shown in the illustration above.
- If identical types or identical sizes follow each other, the pump with the higher pump flow is placed closer to the drive.

Connection, assembly

- As a rule, multi-flow pumps are mounted to the drive using a flange. All information on flange designs and shaft ends is contained in the relevant pump series catalog.
- For further relevant information, such as how to determine the adapter housing, see brochure No. G 1714 (Voith Multi-flow Pumps).

Selection

- 1. Determine the pressure ranges and then choose the appropriate pump series.
- 2. Determine the deliveries, and then select the appropriate size(s).
- 3. Define the sequence of the pumps.
- 4. Check the torque.
- 5. Determine the direction of rotation and suction.
- 6. Specify the mounting flange and shaft end.

Designs

Rotation and suction		Mounting flange	Shaft end		
clockwise	anti-clockwise		e-		
		0 1 1 4 5 5	10		
Special design 4	 8 9 Special design 	 7 For designs and dimensions, see catalog of the relevant pump series. 0 SAE 2- hole flange 	For designs and dimensions, see catalog of the relevant pump series.		
		 SAE 4-hole flange VDMA 2-hole flange VDMA 4-hole flange SAE 2-hole flange (variant) 			

Voith Turbo GmbH & Co. KG Hydrostatics Alexanderstr. 2 89522 Heidenheim, Germany Tel. +49 7321 37-4573 Fax +49 7321 37-7809 hydrostatik@voith.com www.voithturbo.com/hydrostatics.htm

Voith internal gear pumps

used around the world

Plastics injection molding machine

Punching press

Hydraulic unit

Lifting platform

Marine applications

Additional applications:

- Die casting machines
- Packing presses
- Shears
- Ground drilling machines
- Test rigs
- Hydraulic presses
- Crane building
- Lifting devices
- Garbage collection vehicles

G 1418 e 02.2005 1000 KO/WA Changes attributable to further technical developments remain reserved.

